Vererbung / Genetik / Epigenetik

 

 

 

 

 

Aktualisierte Auflage 2023

 

Die Vererbung der Gene ist zwar gesetzlich vorgezeichnet; deren Wirkung aber kann und wird durch die Epigenetik oft modifiziert.

 

Die Epigenetik zeigt das variable Programm zur Anpassung der Gene an die Umwelt und ist ebenfalls vererbbar. Sie hat Einfluss auf die Gene durch deren An- und Abschaltung, die durch die jeweiligen Ziele verursacht wird.

 

Die Genetik beschreibt die Duplizierung der Gene aus den Chromosomen und deren Aufgabe, diese möglichst unverändert auf die jeweiligen Zellen zu übertragen. Die Gene liegen ja mit ihren jeweiligen Abschnitten in der DNA der Chromosomen und bestimmen den Bauplan des Menschen.

 

Man kann aber nicht sagen, dass die Gene unbeein­flussbar den Menschen steuern, weil man die Epigenetik einrechnen muss, die variable Muster erzeugen kann. Man ist den Genen nicht hilflos ausgeliefert. Dafür sorgt, wie gesagt, die Epigenetik, die ebenfalls vererbt wird und sich an diversen Zielen und deren Mittelpunkten orientiert.

 

Nahezu alle Chromatinmuster, die aus DNA und Histonen (Proteine) bestehen, sind veränderbar. An die Histone können sich mittels Andocken von chemischen Gruppen einzelne Gene verändern, d. h. sie an- oder abschalten.

 

Lange Zeit ging die Forschung davon aus, dass die Erbmasse und deren Funktionen durch Umweltein­flüsse nicht vererbt werden können.

 

Diese Ansicht ist auf den Weg, sich zu relativieren.

 

 

Und: Es wird immer wieder darauf hingewiesen, dass Darwins Theorie von der Entwicklung des Lebens für die Erklärung der Kompliziertheit der Lebewesen nicht ausreichend ist, weil dafür viel mehr Zeit notwendig gewesen wäre.

 

Die Epigenetik könnte diese Lücke schließen: Ziele entstehen oder passen sich an.

 

Ist diese Veränderung lebenswichtig und nachhaltig, dann wird sie vererbt. Die Lebewesen würden sich also um ein Vielfaches schneller anpassen, als dies bei der Darwinʼschen Theorie der Fall ist.

 

Da alles von Zielen[1] gesteuert wird, könnte man also hiermit die relative Schnelligkeit der Evolution erklären: Es handelt sich nicht nur um Darwins natürliche Auslese oder die Mutation in der DNA, sondern auch, wie erfolgreich Ziele im Leben erreicht werden. Dies erzeugt epigenische Strukturen, die im obenstehenden Sinne vererbt werden können.


 

 

 

Epigenetik zwischen den Generationen

Max-Planck-Forscher zeigen, dass wir mehr als nur Gene erben

13. JULI 2017

Entwicklungsbiologie Genetik Immunbiologie

Wir sind mehr als die Summe unserer Gene. Epigenetische Mechanismen, die durch Umwelteinflüsse wie Ernährung, Krankheit oder unseren Lebensstil verändert werden, nehmen eine wichtige Rolle bei der Steuerung unseres Erbguts ein, indem sie Gene ein- oder ausschalten. Lange Zeit war fraglich, ob diese epigenetischen Informationen, die sich über das ganze Leben hinweg in unseren Zellen ansammeln, die Grenze der Generationen überschreiten und an Kinder oder sogar Enkel weitervererbt werden können. Forscher des Max-Planck-Instituts für Immunbiologie und Epigenetik in Freiburg konnten nun zeigen, dass nicht nur die vererbte DNA selbst, sondern auch vererbte epigenetische Instruktionen zur Regulierung der Genexpression der Nachkommen beitragen. Darüber hinaus beschreiben die neuen Erkenntnisse des Labors von Nicola Iovino zum ersten Mal die biologischen Folgen dieser vererbten epigenetischen Informationen. Die Studie an Fliegen verdeutlicht, dass das epigenetische Gedächtnis der Mutter für die Entwicklung und das Überleben der neuen Generation wesentlich ist.

 

In unserem Körper finden sich mehr als 250 verschiedene Zelltypen. Sie alle enthalten genau dieselbe DNA-Sequenz. Interessanterweise sehen jedoch Leber- oder Nervenzellen sehr unterschiedlich aus und haben zudem sehr verschiedene Eigenschaften. Den Unterschied macht ein Prozess mit dem Namen Epigenetik. Sogenannte epigenetische Modifikationen markieren bestimmte Regionen der DNA, um Proteine anzulocken oder zu binden, die Gene anschalten oder ausschalten. So erzeugen diese Modifikationen Schritt für Schritt die zelltypischen Muster aktiver und inaktiver DNA-Sequenzen für jeden Zelltyp. Im Gegensatz zu den feststehenden „Buchstaben“ der DNA-Sequenz können epigenetische Markierungen während unseres gesamten Lebens und in Reaktion auf unsere Umwelt oder unseren Lebensstil verändert werden. Beispielsweise ändert das Rauchen das epigenetische Programm von Lungenzellen, was zu Krebs führen kann. Aber auch die Einflüsse von weiteren externen Reizen wie Stress, Krankheit oder der Ernährung können im epigenetischen Gedächtnis der Zellen gespeichert werden.

Lange Zeit ging die Forschung davon aus, dass epigenetische Informationen die Grenze der Generationen nicht überschreiten können. Wissenschaftler nahmen an, dass das epigenetische Gedächtnis, das während des gesamten Lebens angehäuft wurde, bei der Entwicklung von Spermien und Eizellen vollständig gelöscht wird. Erst vor kurzem wiesen mehrere Studien nach, dass epigenetische Markierungen tatsächlich an folgende Generationen weitervererbt werden – aber wie genau und welche Auswirkungen dies auf die Nachkommen hat, blieb bisher unklar.

„Hinweise auf generationsübergreifende epigenetische Vererbung gibt es bereits seit dem Beginn  epigenetischer Forschung. Zum Beispiel konnten epidemiologische Studien eine auffällige Korrelation zwischen der Nahrungsmittelversorgung von Großvätern und einem erhöhten Risiko für Diabetes und Herz-Kreislauf-Erkrankungen bei deren Enkeln zeigen. Seitdem haben verschiedene Studien in unterschiedlichen Modellorganismen immer wieder epigenetische Vererbung nahegelegt, jedoch blieben die molekularen Mechanismen dahinter weiter unbekannt”, sagt Nicola Iovino, Gruppenleiter am Max-Planck-Institut Freiburg.

Epigenetik zwischen den Generationen

Er und sein Team erforschten an Fruchtfliegen, wie epigenetische Veränderungen von der Mutter auf den Embryo übertragen werden. Das Team konzentrierte sich in seiner neuesten Studie auf eine bestimmte Modifikation namens H3K27me3, die es auch beim Menschen gibt. H3K27me3 wirkt auf das sogenannte Chromatin und somit die Verpackung der DNA im Zellkern ein. Es erhöht den Verpackungsgrad und vermindert somit die Zugänglichkeit der DNA, wodurch Gene stillgelegt werden.

Die Max-Planck-Forscher fanden nun in ihren Experimenten heraus, dass die H3K27me3-Modifikationen am Chromatin in den Eizellen der Mutter auch noch nach der Befruchtung im Embryo vorhanden sind, obwohl andere epigenetische Modifikationen gelöscht wurden. „Dies zeigt, dass die Mutter nicht nur DNA, sondern auch ihre epigenetischen Modifikationen und somit einen Plan, wie die DNA abzulesen ist, an ihre Nachkommen weitergibt. Wir wollten darüber hinaus aber wissen, ob die epigenetischen Modifikationen auch Funktionen in der Embryonalentwicklung erfüllen“, erläutert Fides Zenk, Erstautorin der Studie.

Vererbte epigenetische Informationen sind entscheidend für die Embryogenese

Zur Beantwortung dieser Frage nutzten die Forscher zahlreiche molekulare und genetische Werkzeuge, um in den Embryonen der Fruchtfliegen Enzyme zu entfernen, die H3K27me3-Modifikationen am Chromatin setzen. Dabei entdeckte das Team, dass sich Embryonen, denen diese Modifikationen während der frühen Entwicklung fehlten, nicht normal entwickelten und die Embryogenese nicht bis zum Ende durchliefen. „Unser Ergebnisse zeigen, dass bei der Fortpflanzung nicht nur epigenetische Instruktionen von einer Generation auf die nächste weitergegeben werden, sondern – was viel wichtiger ist – dass diese auch entscheidend für die Entwicklung des Embryos sind“, sagt Nicola Iovino.

Bei den untersuchten Embryonen zeigte sich, dass wichtige Entwicklungsgene, die normalerweise während der frühen Embryogenese abgeschaltet sind, in Embryonen ohne H3K27me3 zu früh aktiv wurden. „Werden diese Gene zu früh während der Entwicklung aktiviert, kann eine normale Embryonalentwicklung nicht mehr ablaufen. Dies führt zum Tod der Embryos. Es scheint, dass vererbte epigenetische Informationen der Mutter benötigt werden, um den genetischen Code während der Entwicklung des Embryos zu kontrollieren und richtig zu verarbeiten“, erklärt Fides Zenk.

Auswirkungen auf Vererbungslehre und die menschliche Gesundheit

Die Ergebnisse der Studie sind für die Max-Planck-Forscher ein wichtiger Schritt in der breit geführten Debatte zur epigenetischen Vererbung. Denn einerseits konnten die Forscher belegen, dass epigenetische Modifikationen in Fliegen über Generationsgrenzen hinweg übertragen werden. Andererseits zeigen die Daten der Forscher die biologischen Folgen dieser Vererbung und legen nahe, dass epigenetische Markierungen, die von der Mutter übertragen werden, einen genau abgestimmten Mechanismus darstellen, um die Genaktivierung während des komplexen Prozesses der frühen Embryonalentwicklung zu regulieren.

Das internationale Team aus Freiburg ist überzeugt, dass ihre Erkenntnisse zukünftig weitreichende Konsequenzen haben könnten. „Unsere Studie legt den Schluss nahe, dass wir mehr als nur Gene von unseren Eltern erben. Denn wir fanden auch Mechanismen, die die Aktivität unseres Erbguts steuern und von denen wir wissen, dass sie durch unsere Umwelt und vom individuellen Lebensstil beeinflusst werden. Es ist somit durchaus denkbar, dass zumindest in einigen Fällen erworbene Umweltanpassungen über die Keimbahn auch an die Nachkommen weitergegeben werden könnten”, erläutert Nicola Iovino. Dies ist besonders interessant, da Störungen epigenetischer Mechanismen auch zu Krankheiten wie Krebs, Diabetes oder Autoimmunerkrankungen führen. Weiterführende Studien, die sich in anderen Modellorganismen oder auch im Menschen mit ähnlichen Modifikationen beschäftigen, können so vielleicht zu ganz neuartigen Therapieansätzen führen.

 

 

 

How could one 

explain oneself...

 

altruism

 

anchor

 

atheist

 

attachment in children

 

Body-mind separation

 

Brain (and its “operational

 

secret")

 

Brain (how it works)

 

brain flexibility

 

Brain versus computer

 

chaos

 

chosen

 

consciousness (description)

 

conscience

 

common sense

 

Complexes

 

creativity / intuition

 

Descendants

 

De-escalation

 

depression

 

Determinism

 

distraction / priming

 

Dreams

 

Empathy / sympathy

 

fall asleep

 

fate

 

feelings (origin)

 

First impression

 

emotional perceptions (feelings and emotionality)

 

forget (looking for)

 

frame

 

Free will

 

freedom

 

frontal lobe

 

future

 

growth

 

gut feeling

 

Habits

 

Inheritance, Genetics, Epigenetics

 

Heuristics

 

How the world came into being

 

How values arise

 

Ideas (unintentional)

 

Immanuel Kant

 

Inheritance, Genetics, Epigenetics

 

karma

 

Love

 

Location of the goals

 

Meditation (relaxation)

 

Midpoint-mechanics (function and explanation)

 

Mind

 

Mirror neurons

 

near-death experiences

 

objective and subjective

 

Panic

 

perception

 

Perfection

 

placedos

 

prejudice

 

primordial structures

 

Prophecy, self-fulfilling

 

psyche (Definition and representation)

 

Qualia-Problem

 

Rage on oneself

 

See only black or white

 

sleep

 

the SELF (definition)

 

Self-control

 

[sense of] self-esteem

 

self-size

 

Similarities

 

Self-knowledge

 

soul / spirit

 

Substances and laws (definition)

 

Superstition

 

thinking

 

trauma

 

truth and faith

 

Values

 

yin and yang

 

 

What kind of reader would you characterize yourself as?

 

1. I can't understand this.

2. I don't want to understand that because it doesn't fit my own worldview. (So, not to the aims that created this.)

3. I use my cognitive abilities to understand it.

4. I has judged beforehand and thinks I alredy understands everything.