Wie könnte man sich erklären...                                        WIE SICHSELBSTERFÜLLENDE PROPHEZEIUNGEN ABLAUFEN

 

Die sichselbsterfüllende Prophezeiung erzeugt ein Ziel. Dieses bildet einen entsprechenden Mittelpunkt, eine Erwartungshaltung im Gehirn. Man achtet – unbewusst oder bewusst – auf alles, was zu dieser Prophezeiung passt. Zweifel werden nicht wahrgenommen, weil die Mittelpunkt-Mechanik diese ausgrenzt.

 

Der Mensch und die Welt werden also in eine bestimmte Struktur gebracht, in der alles, was dem Ziel entspricht, wahrgenommen wird.

 

Wer etwa an einen Fluch glaubt, wird oft sehen, dass er sich erfüllt. Besonders betroffen sind hier Menschen, die an höhere Wesen, wie Gott oder das Schicksal, an Metaphysik oder Mystik glauben.

 

Oder wenn man eine negative Weltsicht hat.

 

Insbesondere auch im Alltag findet man diese Abläufe oft, wenn man denkt, glaubt oder sagt, dieses oder jenes wird geschehen.

 

Jeden Tag nehmen wir unzählige Male unbewusst Voraussagen, Einschätzungen vor, um uns entsprechend einzustellen. Darunter sind häufig Antizipationen, die schlicht falsch sind, weil sie lediglich z. B. den eigenen Wünschen, der Angst, dem Glauben entsprechen.

 

 

 

●●● ●●● ●●●●●● ●●● ●●●

 

 

 November 14, 2018, University of Colorado at Boulder

 

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

 

 

 

CU Boulder neuroscientist Tor Wager. Credit: CU Boulder

Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

That's the takeaway of a new brain imaging study published in the journal Nature Human Behaviour which found that expectations about pain intensity can become self-fulfilling prophecies. Surprisingly, those false expectations can persist even when reality repeatedly demonstrates otherwise, the study found.

"We discovered that there is a positive feedback loop between expectation and pain," said senior author Tor Wager, a professor of psychology and neuroscience at the University of Colorado Boulder. "The more pain you expect, the stronger your brain responds to the pain. The stronger your brain responds to the pain, the more you expect."

For decades, researchers have been intrigued with the idea of self-fulfilling prophecy, with studies showing expectations can influence everything from how one performs on a test to how one responds to a medication. The new study is the first to directly model the dynamics of the feedback loop between expectations and pain and the neural mechanisms underlying it.

Marieke Jepma, then a postdoctoral researcher in Wager's lab, launched the research after noticing that even when test subjects were shown time and again that something wouldn't hurt badly, some still expected it to.

"We wanted to get a better understanding of why pain expectations are so resistant to change," said Jepma, lead author and now a researcher at the University of Amsterdam.

The researchers recruited 34 subjects and taught them to associate one symbol with low heat and another with high, painful heat.

Then, the subjects were placed in a functional magnetic resonance imaging (fMRI) machine, which measures blood flow in the brain as a proxy for neural activity. For 60 minutes, subjects were shown low or high pain cues (the symbols, the words Low or High, or the letters L and W), then asked to rate how much pain they expected.

Then varying degrees of painful but non-damaging heat were applied to their forearm or leg, with the hottest reaching "about what it feels like to hold a hot cup of coffee" Wager explains.

Then they were asked to rate their pain.

Unbeknownst to the subjects, heat intensity was not actually related to the preceding cue.

The study found that when subjects expected more heat, brain regions involved in threat and fear were more activated as they waited. Regions involved in the generation of pain were more active when they received the stimulus. Participants reported more pain with high-pain cues, regardless of how much heat they actually got.

"This suggests that expectations had a rather deep effect, influencing how the brain processes pain," said Jepma.

Surprisingly, their expectations also highly influenced their ability to learn from experience. Many subjects demonstrated high "confirmation bias—the tendency to learn from things that reinforce our beliefs and discount those that don't. For instance, if they expected high pain and got it, they might expect even more pain the next time. But if they expected high pain and didn't get it, nothing changed.

"You would assume that if you expected high pain and got very little you would know better the next time. But interestingly, they failed to learn," said Wager.

This phenomenon could have tangible impacts on recovery from painful conditions, suggests Jepma.

"Our results suggest that negative expectations about pain or treatment outcomes may in some situations interfere with optimal recovery, both by enhancing perceived pain and by preventing people from noticing that they are getting better," she said. "Positive expectations, on the other hand, could have the opposite effects."

The research also may shed light on why, for some, chronic pain can linger long after damaged tissues have healed.

Whether in the context of pain or mental health, the authors suggest that it may do us good to be aware of our inherent eagerness to confirm our expectations.

"Just realizing that things may not be as bad as you think may help you to revise your expectation and, in doing so, alter your experience," said Jepma.

 Explore further: Mental imagery manages pain independent of opioid system

More information: Marieke Jepma et al, Behavioural and neural evidence for self-reinforcing expectancy effects on pain, Nature Human Behaviour (2018). DOI: 10.1038/s41562-018-0455-8 

Journal reference: Nature Human Behaviour 

 

 

 

 

 

How could one 

explain oneself...

 

altruism

 

anchor

 

atheist

 

attachment in children

 

Body-mind separation

 

Brain (and its “operational

 

secret")

 

Brain (how it works)

 

brain flexibility

 

Brain versus computer

 

chaos

 

chosen

 

consciousness (description)

 

conscience

 

common sense

 

Complexes

 

creativity / intuition

 

Descendants

 

De-escalation

 

depression

 

Determinism

 

distraction / priming

 

Dreams

 

Empathy / sympathy

 

fall asleep

 

fate

 

feelings (origin)

 

First impression

 

emotional perceptions (feelings and emotionality)

 

forget (looking for)

 

frame

 

Free will

 

freedom

 

frontal lobe

 

future

 

growth

 

gut feeling

 

Habits

 

Inheritance, Genetics, Epigenetics

 

Heuristics

 

How the world came into being

 

How values arise

 

Ideas (unintentional)

 

Immanuel Kant

 

Inheritance, Genetics, Epigenetics

 

karma

 

Love

 

Location of the goals

 

Meditation (relaxation)

 

Midpoint-mechanics (function and explanation)

 

Mind

 

Mirror neurons

 

near-death experiences

 

objective and subjective

 

Panic

 

perception

 

Perfection

 

placedos

 

prejudice

 

primordial structures

 

Prophecy, self-fulfilling

 

psyche (Definition and representation)

 

Qualia-Problem

 

Rage on oneself

 

See only black or white

 

sleep

 

the SELF (definition)

 

Self-control

 

[sense of] self-esteem

 

self-size

 

Similarities

 

Self-knowledge

 

soul / spirit

 

Substances and laws (definition)

 

Superstition

 

thinking

 

trauma

 

truth and faith

 

Values

 

yin and yang

 

 

What kind of reader would you characterize yourself as?

 

1. I can't understand this.

2. I don't want to understand that because it doesn't fit my own worldview. (So, not to the aims that created this.)

3. I use my cognitive abilities to understand it.

4. I has judged beforehand and thinks I alredy understands everything.